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THE DIFFUSION OF LOAD FROM A BAR EMBEDDED
IN A SEMI-INFINITE ELASTIC MEDIUM

J. F. DIckIE and F. P. ALLWOOD

Engineering Department, The University of Manchester, Manchester, England

Abstract—The diffusion of load from a finite bar embedded in a semi-infinite elastic medium is examined. The
integral equation approach embraces both projecting and totally embedded bars. A range of cases is analysed
and comparative solutions have been obtained from a finite element analysis.

NOTATION
A, area of bar
E Young’s modulus
E, E,—E,
K; influence coefficients
L,,L, z-coordinates of ends of bar
Ly z-coordinate of the external force

P external force

R radius of bar

Ry, Ry + (R +(z—0P) + /(R +(z+0))

¢ general point defined in Fig. 1

n {(z—c)lz <]

P longitudinal force in bar

q force/unit length applied to the medium as a consequence of the diffusion of load in the bar
radial stress on the bar

B A4 .
r.z coordinate axes
v Poisson’s ratio

Suffices b, m refer to the bar and the medium, respectively.

1. INTRODUCTION

Loap diffusion from a bar to an attached flat plate has been investigated by a number of
authors and their results have been comprehensively discussed elsewhere [1, 2]. For a bar
embedded in a semi-infinite elastic medium an analagous three-dimensional approach, as
proposed by Muki and Sternberg [3, 4], may be adopted.

Figure 1 represents, schematically, the problem as considered herein, the particular
cases examined are:

(i) an embedded bar, with
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F1G. 1. Schematic representation.

and

(i) a projecting bar, with

2. GENERAL EQUATIONS

The bar-medium combination is initially considered to consist of a continuous medium
of Young’s Modulus E,, and a fictitious bar of Young’s Modulus (E, — E,,). This approach
follows directly from essentially two-dimensional methods applied to stiffener-sheet
combinations [1, 2] and was proposed by Muki and Sternberg [3, 4].

Consideration of strain compatibility between the fictitious bar and the medium
yields an integral equation. To set up this integral equation it is convenient to define
influence functions K;{x,y,z,r,c) where K,(x,y,z,r,¢) and K,,(x,y,zr, c) represent,
respectively, the longitudinal and radial strains in the medium at (x, y, z) due to a stress of
magnitude 1/rr?, in the negative z-direction, acting over a circular area defined by:

K (x, y,z,r,¢) and K,,(x, y, z, r, ¢) represent, respectively, the longitudinal and radial
strains in the medium at (x, y, z) due to a positive unit stress acting radially over the
cylindrical area defined by:

x2+y? =r¥c—3dec <z <c+ide

The idealized forces applied to the medium by an element of the fictitious bar, of length
de, comprise of a longitudinal force/unit length, related to the decay of load in the bar,
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and the force due to the radial stress s(c). The use of the previously defined influence func-
tions enables the longitudinal strain at (0, 0, z) to be written as

L2
{Q(C)Kl 1(05 03 2, Ra C)+ S(C)KIZ(O) 07 z, R’ C)} dC - Kl 1(09 0; z, Rs Ll) . p(Ll)

Ly
+K,,(0,0,2z R, L,). p(L,) (1)

where p(L,) and p(L,) are the end loads in the fictitious bar.
Consideration of the equilibrium of an elemental length of bar gives

g(c) = —dp(c)/dc = —p'(c). (2

Thus the longitudinal strain in the medium at (0,0, z) is

Lz
- {Kx 1(0,0,z, R, 0)p'(c) - K ,(0,0, 2, R, C)S(C)} dc—-K4(0,0,z,R, L,). p(L,)
Ly

+K,1(0,0,2 R, L,). p(L,)+ K ,(0,0,2 R, L;). P* 3)

where P* is a fraction of the externally applied force, P, and its magnitude is a function of
the relative stiffnesses of bar and medium.
Similarly the radial strain at (0, 0, z) is

L
- {K,1(0,0,2, R, c)p'(c)— K,5(0,0, z, R, c)s(c)} dc — K ,,(0,0, z, R, L,) . p(L,)

Ly
+K,,(0,0,2, R, Ly). p(Ly)+ K,,(0,0,2 R, Ly). P*. @)

With the assumption that the bar stresses in the fictitious bar are uniform across a bar
diameter, and that for radial and longitudinal compatibility between the fictitious bar and
the medium it suffices to equate strains along the line x = y = 0 in the medium and the
bar centre line, then (3) and (4) give

Lz

p(2)/ AE; — 2vyS(z)/Ep = — . {K1(0,0,z R, c)p'(c)— K,(0,0, z, R, ¢)s(c)} dc

“KII(O, 05 Z, R7 Ll)’ p(L1)+K11(0’ O’ Z, R, LZ)‘ p(LZ)

+K,,(0,0,z,R, Ly). P* (5
Lo
V(2 AyEs+ (1 —vy)s(2)/ E; = f {K,1(0,0, 2, R, c)p'(c)— K,,(0,0, z, R, ¢)s(c)} dc
Ly

- KZI(Oa 0& z, Ra Ll) - p(L1)+ K21(03 Os 2z, R’ LZ) - P(Lz)
+K,:0,0,2z, R, L3}). P*. {6)

As the load distribution in the fictitious bar may be discontinuous, the terms involving
p'(c) in equations (5) and (6) are inconvenient. Previous investigators of similar problems
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[1, 3} have found that integration by parts eliminates this difficuity and equations (5) and
{6) become

P2)/AE;—2vS(2)/ Ey = L 2 {K11(0,0, 2, R, c)plc) + K ,(0,0, 2, R, ¢Js(c)} dc

+K11(Oa 09 2, R; LS) P (7)

L2

—v,p(2)/ ApEr +{1 —v)s(2)/E; = L {K31(0,0,z, R, o)p(c) + K,,(0, 0, z, R, c)s(c)} de

+K,,(0,0,z, R, L;). P. ®)

It is noted that as a consequence of the integration by parts the term P* in equations (3}{6)
becomes P, the externally applied force.
In equations (7) and (8)

K'1(0,0,2, R, ¢) = 8{K,,(0,0,2, R, ¢)}/dc
K%1(0,0,z, R, ¢) = 3{K,,(0,0, z, R, ¢)}/dc.
Equations (7) and (8) are integral equations for this problem. Henceforward, for brevity,
functions of the form (0,0, z, R, ¢) will be written as f(z, ¢), e.g.
K z,¢) = K4(0,0,z,R, c).

If the bar is treated one-dimensionally, neglecting transverse effects, then equation (7)
becomes

Ly
p2)/AE; = . {Ki1(z, )p(c) dc} + K4z, Ly) . P. ®

For the problem defined schematically in Fig. 1, with P = 1,equations(7)and(8)become

L3
p(z)/ ApE; ~2v,5(2)/E, = . {K11(z, )p(c) + K 5(z, )s(c)} de+ Ky 4(z, Ls) (10)

Ly
= Vpp(2)/ ApEs + (1 —v)s(2)/E; = | K’ iz, o)ple) + K 55(z, o)sle)} de+ Ky y(z, L) (11)
i
The required influence functions may be derived from a paper by Mindlin [5] and are given
in Appendix A. The function K ,(z, ¢) has a singularity at z = ¢ arising from a finite dis-
continuity in the function K,,(z, ¢).
If it is assumed that this discontinuity occurs in the range (z—dc) < ¢ < (z+dc) then
the integral term involving K ,(z, ¢) in equation (10) becomes

Lz 2~ de %+ de
K'1(z,¢)p(c)de = Lt {f K1 1(z, c)ple) dC+J. K 1(z, o)plc) de
Ly dc—0 Ly z-—-dc¢
L2
+ Ky, (z, ¢)plc) dc}
z+de
Ly z+de
~ [k oplo) det Le f K, (2, Oplo) de (12)
f 2 dc=0 Jz—ge
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where kY ,(z, ¢} in the first integral term is continuous. Referring to Fig. 2 it may be seen that

Lt f T K p©) de = —(1+v,)(1 =29, )p(/(1 -, 7R E,.

de=0 Jz—go
Thus from equation (12)

Lo Lz
Kz, c)plc) de = 1102 oplc) de— (1 +v,) (1~ 2v,)p(2)/(1 = v,)nRE,,  (13)

Ly Ly

(4w, M(1-22,,)
(1-v,, ) mR?E,

_—

Kylze)

— 2dcl<———

FiG. 2.

and equation (10) becomes,

L2
p(2)/ AE; — 2v,8(2)/E; = . {k'11(z, )p(c) + K 5(z, ¢)s(c)} de

~(1+v)(1 =2v,)p(2)(1 = v,)nR2E,, + K1(z, La). (14)

Equations (11) and (14) are the integral equations which apply to this problem.
If the bar is treated one-dimensionally a similar procedure to the above yields
Ly
P(z)/AbEf = 11z, o)p(e) de— (1 + v, ) (1 = 2v,,)p(z)/(1 — v, )R 2Em +K,4{z, Ly). (15)
L
Equations {11) and (14) may be solved numerically for the force distribution, p(z), in
the fictitious bar. Hence the fraction of the externally applied load, P*, and the decay of
load in the fictitious bar are obtainable directly. The force distribution, p,(z), induced in
the medium by these forces, P*, dp(z)/dc, p(L,) and p(L,) may be derived. The actual force
distribution in the bar, p,(z) is obtained by summation of the constituent contributions,

p(z) and p,(2).

3. RESULTS

The integral equation approach described previously has been adopted for the solution
of a number of cases. Results for the particular cases of (a) a bar deeply embedded in the
medium and axially loaded at its centre and (b) an end loaded bar projecting from the
medium are presented in Figs. 3 and 4.
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FiG. 3. Decay of load from a deeply embedded bar.

It was further felt desirable to obtain a solution using finite element techniques, for the
projecting bar case, to permit consideration of the more realistic aspect of axial stress
variation across the bar. Initial formulations incorporated elements of triangular cross
section. These proved inadequate where high strain gradients prevailed and the results
presented in Fig. 6 have been obtained from elements of quadrilateral cross section [6].

Figure 3 shows the results of the integral equation analysis as applied to a centrally
loaded deeply embedded bar of length 40 bar radii; curves shown are based on an analysis
including transverse effects. Results based on an analysis ignoring transverse effects
differed by less than I per cent. When the bar is deeply embedded it may effectively be con-
sidered to be embedded within an infinite medium, and the results are directly comparable

0 R ——— Neglecting tronsverse stresses
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\\ == Tgking account of tronsverse siresses
08 - N
N Vi = ¥ 1/4

Y 08
'y

04

02 b

[«

F1G. 4. Decay of load from a projecting bar, L/R = 10.
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F1G. 5. Decay of load from a projecting bar, L/R = 10.
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with those of Muki and Sternberg [3] who verified their numerical solution with an exact
solution. Reference to Fig. 3 shows that the two sets of results are almost identical as one
would expect due to the similarity of the analyses, although the line compatibility condi-
tion used by the present authors is rather simpler than the area compatibility condition.

Figure 4 compares the diffusion of load from an end loaded projecting bar, of length
10 bar radii, when transverse effects are considered with the solution obtained when trans-
verse effects are not considered. An inadequacy of the line compatibility criterion is evident,
near the origin, from the curves obtained neglecting transverse effects. The solution incor-
porating transverse effects is compared in Fig. 5 with the solution given in Ref. [4].
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F1G. 6. Decay of load from a projecting bar, L/R = 10.
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Figure 6 compares the integral equation solution with the finite element solution and
is of interest in that the finite element solution permits a variation of axial stress across the
bar diameter to be considered and this is of significance in the vicinity of the origin. How-
ever overall comparison is quite favourable. From the curves presented, for the lower
stiffness ratios the area compatibility approach given in Ref. [4] compares more favourably
with the finite element analyses. For the higher stiffness ratios the necessity of including
transverse effects is evident.

4. CONCLUSIONS

An integral equation approach has been used to examine the load diffusion from an
axially loaded bar embedded in a semi-infinite medium. Numerical results have been
obtained for both projecting bars and deeply embedded bars. For embedded bars a one
dimensional treatment of the bar is sufficient but for the projecting bar it is found that
transverse stresses need be considered.
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APPENDIX
K.;00,0,2 R, ¢) = {—(1 =4} (z—c)/R, +(z— ) —(z— > +V(3RZ +2(z— c)?))/R}
+(1=229)(z— )+ vz +136)— (3 — 4wz + )R, —(3— M)z(z +¢)?
—c(z+¢)(5z2— ))/RE — (dvelz+c)(1 — 2v)(z + ¢)— )
—v(3—4v)(z—)BR? + 2z + )RS + cz(z + &) (— 6(z + ¢)?
+2v(5R? +2(z+ A)2))/R3 +2(1 —v)(1 +n)

—4v(vn+1—2v?)}/4nR*(1 —v)E (A.1)
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K21(07 09 Z, R9 C) =

K12(09 O, Z, Rs C) =

K,;,(0,0,z,R,¢c) =

with

{2(1 —2v)(z—¢)}/R; —2(1 = 2v)(6¢(1 — V) +¥(z—¢)

(1= =29z +))/R; —(z—)(BR¥1 —v)+ 2(z — c)*(1 = 2v))/R}
+2W(z+ ) (3 —4v)(z + )z — (52— ))/R3 +(1 —v)(4c(z + ) ((z+¢)
x(1=2v)—¢)—(3—4v)(z~c)(3R +2(z +¢)?))/R3

—2cz(z+ ) (1 —v)(SR* +2(z +¢)?) — 6¥(z + ¢)?)/R3

+4(1—2v)(1 —v?)}/8nR*(1 —v)E {A.2)
R2 de{(1—2v)(1+8%(1 = v))/R3 — (1 — 2v)/R3 + 3((z — ¢)* — vR2)/RS
+33—4)((z+)* —vRY/R3 —6c(c+ (1 —2v)(z +¢)

+2v(z—c+(1 = 2v)(z + ¢)))/R3 — 30cz((z + ¢) —vR?)/R]

+16(1 —vi(1 —2v)/R,(R, + z + )2 —4v(1 — v} (1 —2v)

x (3R, +z+)R*/RYR, +z+c)*} /41 —V)E (A.3)

R? de{2v(1 — 2v)/R? — 2(1 = 2v(v + 4(1 —v)2)/ R + 3(R¥(1 — )
—2(z—¢)*)/R} +3(3 — 4v)(R¥(1 —v)—2v(z + ¢)*)/R3
+24cz(2—3v)/R3 + 30cz(2v(z + ¢)* — (1 —v)R*)/R]
+16(1 —v)2(L — 20)/Ry(R; + 2+ )% — 4(1 —v)(1 — 2v)
x 3R, +2+CRYRYR, +2+0)°Y/8(1 —E (A4)

R, = +/(R*+(z—0)})
R, = +/(R*+(z+¢)?)

n = (z—c)/|z—d.

]
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Abcrpaxt—Hccnenyerca paCupeaeeHUe TEUEHMA HATPY3IKU U3 KOHEYHOTO CTEPXKHSA, 3AACIAHHOTO B nonybe-
IKOHEUKOM, ynpyroi cpene. Cnocob pacueTa NpH NOMOIK HHTETPANIBHOTO YDABHCHNA JAET BO3MOKHOCTE
TIONYYMTh DEIUEHHUE AR CTODXKHEH TMOJHO LOTPYXEHHBLIX M C HeKOTOopoH TopuameH vactsio. [aercs
aHATIN3 IAS pAga CliyyaeB M IOJYYaeTCsd CPABHMTENbHBIE PEIIEHHs, MONB3YSCh: METONOM KOHEHHOro

3NMEMEHTA,



